Global Questions for Map Evolution Equations
نویسندگان
چکیده
Just as the harmonic map equation is a geometric analogue of the classical Laplace equation for harmonic functions, so the classical linear evolution PDEs, the heat, wave, and Schrödinger equations, have geometric “map” analogues: the harmonic map heat-flow, wave map, and Schrödinger map equations. These equations are nonlinear when the target space geometry is nontrivial. Quite remarkably, these equations are all of physical (as well as mathematical) interest, at least when the target space is a 2-sphere, arising variously in the study of ferromagnets (and anti-ferromagnets), liquid crystals, and general relativity. In this article we review some recent results for map evolution equations (focusing on the Landau –Lifshitz family of equations, which includes as special cases the heat-flow and Schrödinger map) concerning the basic global questions: singularity formation vs. global regularity, and long-time asymptotics.
منابع مشابه
Orbit Equivalence of Global Attractors for S1-Equivariant Parabolic Equations
We consider the global attractor Af for the semiflow generated by a scalar semilinear parabolic equation of the form ut = uxx + f(u, ux), defined on the circle, x ∈ S. Using a characterization of the period maps for planar Hamiltonian systems of the form u′′ + g(u) = 0 we discuss questions related to the topological equivalence between global attractors.
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملA Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملNew results for fractional evolution equations using Banach fixed point theorem
In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کامل